

(Na⁺, K⁺)- ATPase Activity in Gills of the Mangrove Crab *Ucides cordatus*: a Kinetic Study During Hyposmotic Stress

Lucena M. N¹, McNamara J.C.², Leone F.A¹.

¹Departamento de Química e ²Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/Universidade de São Paulo, Ribeirão Preto, SP, Brasil.

INTRODUCTION: (Na⁺, K⁺)-ATPase couples ATP hydrolysis to the transport of Na⁺ and K⁺ across the plasma membrane against their electrochemical gradients. Osmotic and ionic regulation in the Crustacea is accomplished by the multifunctional gills, together with the excretory organs. **OBJECTIVE:** To examine the kinetic properties of a gill microsomal (Na⁺, K⁺)-ATPase from the mangrove crab, Ucides cordatus, acclimated to 35‰ S for 10 days. MATERIAL AND METHODS: Gill (Na⁺, K⁺)-ATPase activity was assayed spectrophotometrically at 340 nm and 25 °C using a PK/LDH linked system in which ATP hydrolysis was coupled to NADH oxidation. **RESULTS AND DISCUSSION:** (Na⁺, K⁺)-ATPase activity decreased 13-fold in crabs acclimated to 35% S (46 nmol min⁻¹ mg⁻¹) compared to 26‰ S (650 nmol min⁻¹ mg⁻¹). A high- (V_{M} = 6.5±0.32 nmol min⁻¹ mg⁻¹; K_{0.5}= 25.5 \pm 0.9 nmol L⁻¹) and a low-affinity ATP binding site (V_M= 39.4 \pm 1.97 nmol min⁻¹ mg⁻¹; $K_{0.5}$ = 0.04±0.005 mmol L⁻¹), both obeying cooperative kinetics, were disclosed. Stimulation of (Na⁺, K⁺)-ATPase activity by Mg²⁺ (K_{0.5}= 0.37±0.02 mmol L^{-1}), Na⁺ (K_{0.5}= 5.87±0.25 mmol L^{-1}), K⁺ (K_{0.5}= 0.50±0.02 mmol L^{-1}), and NH₄⁺ (K_{0.5}= 1.90±0.11 mmol L⁻¹) also exhibits site-site interactions. K⁺ plus NH₄⁺ does not synergistically stimulate (Na⁺, K⁺)-ATPase activity. Ouabain (K_I= 87.79±3.95 µmol L⁻¹) inhibited total ATPase activity by 75%, suggesting that ATPases other than (Na⁺, K⁺)-ATPase are present. Ouabain inhibition increases about 83% in the presence of NH₄⁺ with a 50% higher K₁. **CONCLUSION:** These findings suggest the differential participation of gill (Na⁺, K⁺)-ATPase activity in the osmoregulatory mechanisms of U. cordatus.

Keywords: mangrove crab, *Ucides cordatus*, (Na⁺, K⁺)-ATPase **Financial support:** FAPESP, CNPq, FAPEAM, INCT-ADAPTA.