

Reduced Na⁺ Accumulation as Affected by Ammonium Nutrition in Sorghum Plants Under Salt Stress

Miranda, R.S.; Paula, S.O.; Gomes-Filho, E.; Melo, D.F.

Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brazil

INTRODUTION: Ionic homeostasis has been cited as essential for salt tolerance of plants. Low Na⁺⁺ accumulation may arise from Na⁺ exclusion and/or compartmentalization, as well as from the control of Na⁺ accumulation and distribution in the tissues. **OBJECTIVES:** This study aimed to analyze if external nitrogen source, as NO₃⁻ or NH₄⁺, imply changes in the Na⁺ accumulation control in sorghum plants. MATERIAL AND METHODS: Sorghum bicolor seeds were sown in vermiculite for four days. Thereafter, uniform seedlings were grown in nutrient solutions containing NO₃⁻ or NH₄⁺ as only nitrogen source for eight days. The plants were submitted to salt stress by adding 75 mM NaCl, for 24 h, and the analyzes of Na⁺ loading xylem, root and shoot Na⁺ concentrations and activities of plasma membrane (SOS1) and tonoplast (NHX) Na⁺/H⁺ antiporters were measured. **RESULTS AND DISCUSSION:** SOS1 and NHX activity was improved by salinity in roots of both nitrogen treatments; however, NH4+-treated plants exhibited SOS1 activity higher than NO₃-treated ones, suggesting that NH₄⁺ in the growth medium induces Na⁺ exclusion in the sorghum roots. This idea is supported by analyzing the loading of Na⁺ in xylem, where a lower Na⁺ loading was registered in NH₄⁺-fed plants. Also, the presence of inhibitors for plasma membrane H⁺-ATPase (vanadate) and SOS1 and NHX antiporters (amiloride) in the growth medium severely improved Na+ loading in NH4⁺-grown stressed plants, whereas promoted no alteration in the ones grown with NO₃. As a result, although salt stress massively increased Na⁺ accumulation in plant tissues, a low accumulation was observed in plants from NH₄⁺ treatments. **CONCLUSION:** Our data clearly evidence that NH₄⁺ as nitrogen source restricts Na⁺ accumulation in sorghum tissues by activating Na⁺ exclusion mechanisms in roots, decreasing its loading and transport trough xylem to the photosynthetic tissues.

Keywords: Ionic homeostasis; nitrogen source; *Sorghum bicolor* Acknowledgments: CNPq; INCTSal; UFC