

Calcium Impairment and Altered Dynamics of a Cardiomyopathy-causing Mutation in Troponin C Explains Disease Phenotype

<u>Mayra de A. Marques</u>¹, Jose Renato Pinto², Adolfo H. Moraes¹, Anwar Iqbal¹, Mariana T. Q. de Magalhães¹, Murilo M. Pedrote¹, Jerson L. Silva¹, Guilherme A. P. de Oliveira¹

¹Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

²Florida State University, Department of Biomedical Sciences, College of Medicine, Florida, USA.

INTRODUÇÃO. Hypertrophic cardiomyopathy (HCM) is one of the most common cardiomyopathies being the major cause of sudden death in young athletes affecting 1 per 500 persons . Cardiac troponin C (cTnC) is the Ca²⁺ sensor of sarcomere and plays an important role in regulating muscle contraction. **OBJETIVO**: Although several cardiomyopathy-causing mutations were identified in cTnC, no information about their structural effects have been attempted to explain HCM phenotype **MATERIAL E METODOS**: Carr-Purcell-Meiboom-Gill relaxation dispersion has captured a low-populated protein folding intermediate as the result of a disease-related mutation that disrupts ion coordination. **DISCUSSÃO E RESULTADOS**: information about their structural effects have been attempted to explain HCM phenotype . Here we showed the mutant D145E inactivates both Ca²⁺ binding sites at cTnC C-domain and abolishes the binding to cTnl₁₂₈₋₁₄₇ peptide because of an altered dynamics occurring in the µs-ms timescale. **CONCLUSAO**: Our results may help to explain how altered dynamics may affect protein functionality and adaptation to the development of pathological phenotypes in complex systems.

Keywords: Troponin C, Cardiomyophaties, Nuclear Magnetic Ressonance Support: FAPERJ, CNPq and INBEB