

Cerebral Endothelial Cell Culture Medium Leads to Resistance of Astrocytes to Catechol-Induced Damage

Borges, J.M.P¹, Costa, M. F. D.², Costa S. L.², El-Bachá, R, S.²

¹Dep. de Química e Exatas, UESB; LabNq UFBA/Fiocruz BA, ²Dep. de Bioquímica e Biofísica, UFBA-BA, Brazil

INTRODUCTION. Endothelial cells and astrocytes have important functions in the Blood-Brain barrier and cerebral homeostasis. Recent studies show that isolated cultures of these cells respond differently than mixed cultures to challenges. OBJECTIVE: To evaluate the resistance of endothelial cells and astrocytes to catechol-induced cytotoxicity. MATERIAL AND METHODS: Glial cells were obtained from newborn Wistar rats. Cells were cultured in supplemented DMEM F12 in 75 cm² flasks, incubated at 37 °C, 5% CO₂, until they reach confluence. Cerebral endothelial cells (CEC) of Wistar rats were cultured in EGM2/DMEM F12 in plates coated with collagen. Astrocytes were treated with 10 - 2000 µM cathecol in the absence or in the presence of 50% (v/v) or 100% CEC conditioned culture medium for 72 h. CEC were exposed to 30 - 6000 µM catechol in the absence or the presence of 50 % (v/v) or 100% astrocytes conditioned medium. The cytotoxicity was evaluated by the MTT assay. EC₅₀ were represented by median, 25^{th} and 75^{th} percentiles (n = 9). **RESULTS AND DISCUSSION:** CEC showed resistance to damages induced by catechol but it induced cytotoxicity to astrocytes: EC₅₀ 38 µM (25th and 75th percentiles). However, the presence of 50% or 100% CEC conditioned medium increased the resistance of astrocytes to catechol: EC₅₀ 247 µM (25th and 75th percentiles) and 158 µM (25th and 75th percentiles), respectively. Morphological analyses showed reactive astrocytes after treatment with 100 and 300 µM catechol. Damages were associated with quinones generation. The protection did not depend on cellular interaction. A protectant agent is probably secreted by CEC exerting a paracrine action. **CONCLUSION:** CEC are more resistant to damages induced by catechol than astrocytes. CEC conditioned medium protects astrocytes against catechol-induced cytotoxicity. However, the identification of protectant molecules secreted by CEC remains to be established.

KEYWORDS: blood-brain barrier; cerebral endothelial cells, astrocytes; endothelial cells/astrocytes interactions

SUPPORT: CNPq